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Preface

This report is a product of the Monitoring of North Jetty at Yaquina Bay,
Oregon (22117) work unit in the Monitoring Completed Coastal Projects
Program (MCCP), Civil Works Research and Development, U.S. Army Corps
of Engineers. Physical model testing was conducted during May 1990 at the
Coastal Engineering Research Center (CERC) of the U.S. Army Engineer
Waterways Experiment Station (WES). This testing was a recommendation of
a workshop held at CERC in June 1989. Ms. Carolyn Holmes was MCCP
Program Manager at CERC.

This report was prepared by Mr. Robert Carver and Mr. Michael J.
Briggs, under the direct supervision of Mr. Dennis G. Markle, Chief, Wave
Processes Branch (WPB), and Mr. D. Donald Davidson, Chief, Wave Research
Branch (WRB), CERC. General supervision was provided by Dr. Steven
Hughes, Wave Dynamics Division (WDD), Mr. C. E. Chatham, Chief, WDD,
Mr. H. Lee Butler, Chief, Research Division (RD), Mr. Charles C.
Calhoun, Jr., Assistant Director, CERC, and Dr. James R. Houston, Director,
CERC.

Many individuals made significant contributions throughout this modeling
effort. Mr. David A. Daffy, WES Instrumentation Services Division, main-
tained the directional spectral wave generator (DSWG) and wave gauges, and
assisted in data collection. Mr. Jeffrey Melby, WRB, identified storm condi-
tions and tide levels. Mrs. Barbara Tracy, RD, performed the Wave Informa-
tion Study (WIS) hindcast of the storm conditions. Mrs. D. R. Green, WPB,
generated control signals for the DSWG from the WIS hindcast data and col-
lected and analyzed data. Stability tests were conducted by Mr. C. R.
Herrington. Dr. Fred Raichlen, Professor, California Institute of Technology,
provided helpful suggestions regarding the physical modeling process.
Mrs. Myra Willis, Branch Secretary, assisted in the preparation of the final
report.

At the time of publication of this report, Director of WES was
Dr. Robert W. Whalin. Commander was COL Bruce K. Howard, EN.
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Conversion Factors, Non-SI to
SI Units of Measurement

Non-SI units of measurment used in this repont can be convened to SI units
as bollows:
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poud (no") per *Aic foot 16.0184 Idiogrms per cubic meow

square hle 00.9290304 square mor

squar miles 2.5W8sq6 uar Ilaomaers

ons (2.000 pmouds. Im) 907.1847 wlograns
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1 Introduction

The Prototype

Yaquina Bay is an estuary located on the Oregon Coast approximately
110 miles1 (204 km) south of the mouth of the Columbia River (Figure 1).
The bay is fed by the Yaquina River, which drains a predominantly forested
watershed of approximately 250 square miles (647 km 2). Elements of the
existing project at Yaquina Bay maintained by the U.S. Army Corps of Engi-
neers include two rubble-mound jetties at the entrance and a 40-ft- (12-m-)
deep by 400-ft- (122-m-) wide entrance channel. The jetties, entrance channel,
and other project features were constructed to provide safer access for vessels
serving the Yaquina River ports of Newport and Toledo, Oregon. Commercial
products handled at these ports include lumber, pulp, paperboard, petroleum,
and seafood. The Yaquina Bay area is also frequently used by individuals
who enjoy recreational fishing and boating.

The Problem

A nanow basaltic offshore reef influences vessels navigating into Yaquina
Bay. The reef lies approximately 3,500 ft (1,067 m) seaward of river mile 0.0
and extends from a point about 2,500 ft (762 in) south of the channel, north-
ward for approximately 17 miles (31 km). Parallel jetties were constructed
through a narrow opening in the reef on an approximate azimuth of S62OW to
permit navigation through this opening.

The north jetty at Yaquina Bay was originally constructed in 1895 to a
length of 2,300 ft (701 in). In 1930, efforts to restore the jetty and extend the
length to 3,700 ft (1,128 m) were completed. Additional reconstruction proj-
ects were performed in 1933 and 1934. The present design length of 7,000 ft
(2,134 m) was authorized in 1958 and completed in 1966, at which time the
jetty extended the entire distance from shore to the edge of the basaltic reef.
By 1970, winter storms had damaged the jetty to such an extent that the outer

I A table of factors for converting non-SI units of measurement to SI units is presented on
page vi.
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Figure 1. Yaquina Bay, Oregon

330-ft (101-rn) section was submerged. A rehabilitation project was authorized
in 1976, and this work was completed in 1978. One year after rehabilitation,
60 ft (18 m) of material had been lost fnxna the jetty end, and aftr two years,
the outer 250-ft (76-rn) section was gone. Aerial photos taken in 1985 indi-
cated that more than 400 ft (122 m) of the north jetty's seawardl end had been
damaged to below mean water level (mwl). In sur mary, the north jetty has
been plagued with a history of unusually rapid deterioration when compared
with similar North Pacific jetties that were built with the same design criteria
and construction techniques. Possible causes of this deterioration are founda-
lion scour caused by currents during storm events, wave-induced displacement
of the anmor stone, or some combination of the above. The proximity of the
reef to the end of the north jetty appears to be an important factor in modify-
ing waves and currents at this location, especially since little or no damage has
occurred to the south jetty, which has similar construction characteristics and
wave exposure.

2 c~wJ
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Purpose of Model Study

The purpose of the present model investigation was to determine if waves
alone were primarily responsible for deterioration of the north jetty at Yaquina
Bay. The model jetty was constructed on a fixed foundation and subjected
only to wave action from known storm conditions as hindcast using the Wave
Information Study (WIS) numerical model. If the model jetty proved to be
stable, it could be assumed that some other factor(s) (possibly current action,
foundation stability, scour, etc.) caused or at least contributed to the prototype
failure.

Report Organization

In Chapter 2, descriptions are given of the physical model, model design,
test facilities and equipment, and model construction methods for the north
jetty. Wave condition hindcasting, simulation, generation, and calibration are
described in Chapter 3. Chapter 4 presents results from the stability tests.
Finally, Chapter 5 contains a summary and conclusions of the physical model-
ing effort. The recommendations of the Inteinational Association of Hydraulic
Research List of Sea State Parameters (1986) are followed wherever possible
throughout this report and in the computer software implemented for wave
generation and analysis.

Chapier 1 Introduction 3



2 The Model

Design of Mo~sI

The study was conducted in a 96-ft-long by 121-ft-wide (29-rn-long by

37-rn-wide) wave basin (Figure 2). Bathyinetry was the same as that used in

the earlier physical model study of the proposed 1988 rehabilitation (Grace and

Dubose 1988). No additional surveys or verification of the nautical charts

KROO SUPORT 3.9
POLES-,

WAEMAE
________________________________________ 1

F ~ ccr 2.. Pla viwcchsia oe

CDqts 2 hOMo



were attempted. Therefore, any deviations from the charts could be a source
of error in the response of the model to waves. All basin walls were lined
with wave absorber frames and horsehair to minimize contamination of the
desired wave field by reflected wave energy.

Tests were conducted at a geometrically undistorted scale of 1:45, model to
prototype. Selection of the 1:45 scale was based on several factors including:
(a) size of the available wave basin, (b) boundaries of the bathymetric area to
be modeled, (c) capabilities of t1-e directional spectral wave generator
(DSWG), (d) availability of required model armor-stone sims, and (e) preclu-
sion of stability scale effects (Hudson 1975). Based on Froude's Model Law
(Stevens et al. 1942) and the linear scale of 1:45, the following model-
prototype relations were derived. Dimensions are in terms of length (L)l and
time M.

Model-Prototype

Charemsvhc I Dimension Scale Relaton

Leth L r = 1:45

Arm L2 Ar = q = 1:2025

Volume L3 Vr = L = 1:191125

Tine T Tr= Lr1P= 1:6.7

The specific weights of water used in the model and that of seawater were
assumed to be 62.4 and 64.0 pounds per cubic foot (pcf) (1,000 and
1,025 kg/n 3), respectively. Likewise, specific weights of construction materi-
als used in the model (165 pcf; 2,643 k / 3 ) were not identical to their proto-
type counterparts (170 pcf; 2,723 kg/mr). These variables were related using
the following transference equation:

r 13
(Wa)m (-f(a)m (M m (Sa)p -1(1)

(Wa)p (Ya)P I L, m

where

Wa = weight of an individual armor unit, lb

m, p = model and prototype quantities, respectively

Ya = specific weight of an individual armor unit, pcf

LdLP = Lr = linear scale of the model

1 For convenience, symbols and abbreviations are listed in the notation (Appendix G).

Chapter 2 The Model 5



Sa = specific gravity of an individual armor unit relative to the
water in which it was placed, i.e., S. = ya/yw

yw = specific weight of water, pcf

Due to the limited area of the test basin, it was impossible to model the
entire length of both jetties at the selected scale (1:45). It was essential that
the offshore bathymetric features be duplicated to the extent that wave trans-
formation into shallow water was properly modeled. This placed the wave
board in a water depth corresponding to the -58-ft (-48-m) mean lower low
water (mllw) contour. This, in turn, allowed construction of about 1,440 ft
(439 m) (32-ft (10-m) model) of the north jetty and 950 ft (290 m) (21-ft
(6-m) model) of the south jetty. The head of the north jetty was positioned in
the basin in such a way that it could be subjected to wave attack from any
direction within a 50-deg window without substantial loss of wave energy from
the ends of the unidirectional waves (Figure 3).

Test Facilities and Equipment

Wave heights were measured at 10 different locations using capacitance
wave gauges (Figure 3). Gauges 1 to 8 were used in a calibration phase to
ensure accurate reproduction of the target wave conditions. The last two
gauges were located on either side of the north jetty head to measure wave
transformation. Gauges 2 to 8 comprised a "2-3-1-7-5-1/2" linear array pat-
terned after the larger linear array design of Oltman-Shay at the U.S. Army
Engineer Waterways Experiment Station (WES) Coastal Engineering Research
Center Field Research'Facility (Crowson et al. 1988). The unit lag spacing of
2 ft (0.6 m) was selected to optimize the frequency and directional resolution
of the array for the 42-ft (13-m) contour.

Test waves were produced by the DSWG, an electronically coi~trolled,
electromechanical system consisting of four modules (Figure 4). Each module
contains fifteen 1.5-ft-wide by 2.5-ft-high (76-cm-wide by 0.76-cm-high) pad-
dles; therefore, the entire 90-ft-long (27.4-m-long) systemconsists of 60 pad-
dles, each of which is independently driven by a 0.75-hp (559 watts) electric
motor. Adjacent paddles are connected with a flexible-plate seal to provide
continuity over the face of the wave board and minimize the introduction of
spurious waves (Outlaw and Briggs 1986, Briggs and Hampton 1987).

Wave board control signals were simulated on a CRAY Y-MP super-
computer and downloaded to a VAX 11/750 computer for transmittal to the
DSWG. This same computer was used to collect data for transfer to a
VAX 3600 computer for later analysis.

6 cChapw 2 The Moda
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Figure 3. Wave gauge locations and wave direction limits

Method of Constructing Test Sections

Jetty sections in the model were constructed to reproduce, as closely as
possible, results of prototype jetty construction. No information was available
on the present condition of the bedding layer, therefore, bedding and core
materials in the undamaged jetty sections were dumped by shovel and leveled
to grade lines that corresponded to as-txzilt conditions. Primary armor
consisted of two layers of paraflelepiped-shaped stones, long slab-like stones
with a maximum length between two and three times their shortest dimension.
The special shaped stones were handmade to Portland District (NPP) specifica-
tions and placed with their long axis perpendicular to the jetty slope above
mllw. Stone placement below mllw was random.

chqmis 2 The M, GI



Figure 4. Directional spectral wave generator
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3 Wave Conditions

Prototype Storms

Numerical simulation

Based on an analysis of meteorological and National Oceanic and Atmo-
spheric Administration buoy data, three storms in 1979 were identified for
numerical simulation: October 17-23, November 17-23, and December 19-27.
These three storm events were hindcast over a 60-nautical mile (n.m.)
(11 -km) grid of the Pacific Ocean between latitude 20ON to 60WN and longi-
tude 1 10*W to 200*W using the WIS deepwater numerical model DWAVE
(Corson 1987). Output from this oceanic hindcast was input to the shallow-
water model SHALWV (Hughes and Jensen 1986) on a 5-n.m. (9.3-km) grid
between latitude 44°N to 45*N and longitude 124*W to 125°W (Figure 5).
This model includes refraction and shoaling in the numerical determination of
the directional spectra.

Directional spectral information was saved at a depth of 16.5 m offshore of
the north jetty for each storm at 12-hr intervals, approximately the same depth
as the wavemaker in the physical model. The number of 12-hr segments
selected for October, November, and December was 14, 14, and 18, respec-
tively. These spectra were represented by 20 frequency bands between 0.03
and 0.22 Hz (0.01-Hz increments) and 36 direction bands between 0 and
350 deg (10-deg increments). Direction bands use a polar coordinate system
with wave angle measured counterclockwise from east (i.e., 90 deg represents
a wave travelling towards the north).

Comparisons with the DWAVE wind and wave results (Tracy and Payne
1990) were made with NOAA buoy 46002, located just to the west of the
smaller grid. Appendix A contains plots of wind speed, peak wave period, and
significant wave height for the three months October through December.
Comparisons of peak period and significant wave height at 12-hr intervals
showed reasonable agreement. Unfortunately, some of the peaks in the buoy
data occurred at 6-hr intervals, between the larger 12-hr intervals. Thus, the
WIS results underpredicted the October storm peak periods and wave heights.

ChqWt 3 Wave COndMa 9
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Sources of uncertainty in the numerical model results are (a) the 12-hr time
interval length (see above), (b) interpolation of wave directions between grids
from the 22.5-deg to 10-deg increments, and (c) interpolation of National
Meteorological Center wind fields on a 2.5-deg grid at 12-hr intervals. Also,
much of the energy in these storms appeared to be traveling parallel to the
coast in the northerly direction. Thus, some of the energy measured at the
offshore buoy would miss the Yaquina jetties.

Model Storms

Numerical simulations included storm buildup and decay for each of the
three storms. The original number of 12-hr segments was reduced from
46 to 13 after a review of wave heights and directions showed that some were
characterized by low energy or storm tracks that stayed offshore. Table I lists
the prototype and model peak period, significant wave height, and mean wave
direction for the three October, seven November, and three December seg-
ments. Model wave directions are measured clockwise from east so that a
wave traveling toward the north has an angle of -90 deg.

Because of time and funding constraints, each 12-hr segment was only
simulated in the physical model for a 6-hr duration. These 6-hr events were
divided into two 3-hr segments: one at high storm tide and one at low storm
tide. Storm tide information was available from a tide gauge located in
Yaquina Bay Harbor. Because the tide is diurnal, high and low water levels
(including tide and storm surge) for each 12-hr cycle were selected from the
high and low measured values for each tidal cycle. Table 2 lists measured
storm tides and corresponding prototype and model water levels at the 17.7-m
contour. The test ID's have a suffix of "H" for high water level and "L" for
low water leveL Exact scaling of the prototype water levels resulted in some
model water levels that showed little variation. Therefore, model water levels
were grouped into seven different levels to expedite calibration and testing.
Instead of adjusting the water level prior to each test, all tests were run at a
particular water level before going to the next level. Appendix B lists proto-
type water levels for each gauge for each test.

Model Wave Generation

Control signal simulation

Each of the 26 test cases (i.e., 13 high-water level and 13 low-water level)
was numerically simulated using a double-summation, deterministic amplitude,
random phase, frequency domain model (Borgman 1990) to generate stroke
time series for each of the DSWG's 61 paddles. Because the digital-to-analog
rate for the DSWG is 20 Hz, control signals of 40,000 points or 2,000 sec
(33.3 min) were generated. Low- and high-frequency cutoffs corresponded to
0.01 and 2.00 Hz, respectively. Except for the water levels, directional

11Chqptmr 3 Wave Condtons



spectral parameters were the same for both high and low water level versions
of each test case.

Data collection and analysis

Wave gauges were calibrated prior to each test with a computer-contrld
procedure incorporating a least square fit of measurements at II steps through
the water column. After a wait of 30 sec to allow the slower traveling, high-
frequency components to reach the jetty, wave elevations were sampled at
10 Hz for 1,600 sec (26.7 min). Data records were zero-moaned and tapered
by a 10-percent cosine bell window using the time series analysis software
package (Long, in preparation). For the frequency domain analysis, data were
band averaged with a bandwidth of 0.067 Hz (degrees of freedom = 214)
within lower and upper cutoff frequencies of 0.01 and 2.50 Hz, respectively.
This bandwidth corresponds to the prototype bandwidth of 0.01 Hz. For the
directional spectral analysis, a Maximum Likelihood Method (MLM) estimator
and a Gaussian smoothing technique (Briggs, Borgman, and Outlaw 1987)
were used within lower and upper frequency limits of 0.01 and 2.00 Hz,
respectively. The equivalent number of smoothed frequency components was
256. A directional resolution of 10 deg, the same resolution as in the
numerical hindcast simulations, was used.

Test Results

An initial calibration phase was conducted to measure and correct the con-
trol signals. The jetty model was covered with several layers of horsehair to
prevent damage to and reflections from the model. A transfer function was
used to correct control signals for observed variations in peak period, wave
height, spectral shape, and directional spread (Briggs and Jensen 1988). Only
gauges 3-6 in the linear array were used for this correction. After two itera-
tions, a satisfactory agreement between target and measured directional spectra
was achieved.

Directional wave spectra

Figure 6 illustrates target and measured model (scaled to prototype) direc-
tional spectra for high- and low-water levels for test case YD25M (i.e. Decem-
ber 25, midnight). Target and measured directional spectra for the other cases
are containe'4 in Appendix C. The entire linear array (gauges 2-8) was used in
the directional spectral calculations. The 3-D directional spectra have units of
m2IHz/deg. The rear vertical panels on each figure illustrate the integrated
direction spectrum and frequency spectrum. The frequency spectrum is
obtained by summing the directional spectrum over all directions for each

12 Ch• ier 3 Ww Cw ft
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Figure 6. Target and measured model directional spectra for case YD25M

frequency and multiplying by the direction increment 10 deg. Similarly, the
direction spectrum is the sum over all frequencies for constant direction, multi-
plied by the frequency increment 0.01 Hz. In general, the agreement is very
good to excellent. In some cases, the target directional spectra had energy
traveling in a northerly direction (i.e., 90 deg) which was not measurable with
the linear array. Visual observation of the waves as they left the DSWG did
verify, at least qualitatively, that this energy was being accurately simulated.
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Figure 7 compares target and measured (i.e., OGA, offshore gauge array)
normalized directional spectra for the YD25MH test case. Target and
measured normalized directional spectra for the other cases are contained in
Appendix D. Figure 7a illustrates the normalized frequency specrum and
Figure 7b shows the normalized directional spreading function at the peak
frequency. The legend for Figure 7a lists the significant wave height and
water depth in centimeters and the frequency increment in hertz. The legend
for Figure 7b lists the peak frequency in hertz, and the mean wave direction
and directional spread in degrees. The directional spread is half the width of
the spreading function at the 50 percent level.

Frequency spectra

Measured model frequency spectra for all 10 gauges for case YD25MH are
shown in Figure 8. Appendix E contains the frequency spectra for the other
cases. Two gauges are plotted in each semi-log panel. The legend lists the
gauge number and water depth in centimeters.

Peak period and wave height

Table 3 lists target and measured peak periods for each test case. Values
are given for gauges 1-10 and the averages of gauges 1-8, 2-8, 3-6, and 9-10.
Plots of measured peak period for each gauge and test case are contained in
Appendix F. In general, the agreement is very good. Some of the gauges in
the December cases exhibit substantial variability about the target periods. An
explanation might be the-large frequency bandwidth used in the band-
averaging process.

Table 4 lists target and measured significant wave heights for each test
case. The format is the same as for the wave periods. Plots of measured
wave height are also contained in Appendix F. In general, the agreement is
excellent. The variability exhibited by gauges 1-8 is within normal spatial
tolerances for 3-D basins (Sand 1979). Gauges 3-6 exhibit less variability than
gauges 2-8 of the linear array. Thus, they were used in the transfer functions
during the calibration phase. Gauges 9 and 10 show an increase due to shoal-
ing at the north jetty tip.

14 Chaptr 3 Wave Cord~Oiw
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4 Jetty Stability Tests

Description of Rehabilitation Plan

me jetty profile and cross sections are presented in Figures 9, 10, and 11.
The rehabilitation plan was characterized by a crest elevation of +20 ft (6 m)
mllw and a crest width of 30 ft (9 in). Armor sections were typically com-
posed of two layers of 6- to 25-ton (5,443- to 22,680-kg) stone (average
weight = 10 tons (9,072 kg)). The model structure is shown in Photos 1

and 2.

One of the most important features of the rehabilitation plan was the use of
the placed-stone construction technique. This procedure requires the use of
parallelepiped-shaped stone with each special shaped stone placed with its long
axis normal to the jetty slope. Past field experience (U.S. Army Engineer
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Figure 9. Jetty profdie
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Figure 11. Jetty Section B-B

District, Buffalo 1946) and laboratory studies (U.S. Army Engineer Waterways
Experiment Station 1963, Markie and Davidson 1979) have indicated that the
use of placed-stone construction techniques results in increased stability of
rubble-mound structures when compared with similar structures armored with
randomly placed angular stone.

18 Choler 4 Jetty Stabiy Tests



Storm Conditions Tested and Results

As described in Chapter 3, an extensive series of model calibration tests
was conducted to develop model storm conditions (control signals) that would
simulate the storm conditions that occurred during October, November, and
December 1979. The first stability test consisted of a 26-step simulation repre-
senting the storms of interest over the 3-month period. Test conditions and
results are summarized in Table 5. Presented therein are the still-water level
(swl), characteristic period and height, and a brief summary of the structure's
response for each step investigated.

The first three steps of the October storm produced only minor rocking of a
few armor units followed by a general loosening of 8 to 10 armor stones dur-
ing steps 4 and 5. No movement was detected during step 6 and the structure
was still in good condition at the conclusion of the October storm.

November storm conditions, generally milder than October conditions, pro-
duced no movement during steps 7 through 17. Minor rocking of a few armor
stones was observed during steps 18, 19, and 20, however, no significant
impact on stability could be discerned.

Initiation of the December storm (step 21) caused displacement of one
armor stone and rocking of a few others. General loosening of the armor
above the swl was observed during steps 22, 23, and 24. Steps 25 and 26
produced minor rocking of 3 or 4 armor stones. The structure emerged from
the 26-step test series in good condition. Loosening of the armor observed in
steps 22, 23, and 24 abated during steps 25 and 26 and appeared to have no
significant impact on overall stability (Photo 3).

After testing was completed, it was discovered that an error in the WIS
hindcast processing of the October test segments caused them to be too low An
period and height Thus, these six segments did not subject the jetty model to
the correct wave conditions during October, a relatively stormy period of the
total test sequence. However, this error is not felt to be serious since none of
the other storm segments produced any significant damage to the north jetty
model.

Results of this 26-step stability test showed significantly less armor move-
ment than was anticipated. Therefore, in an effort to determine the effects of
more extreme wave heights on the model structure, December storm conditions
were repeated with the gain increased (signal amplified) to the limits of the
wave machine. This increased the wave heights by 20-40 percent (maximum
height was 22 ft (7 in)). A few more armor stones were displaced; however,
overall stability was still good.

Tate next step consisted of an additional series of tests to expose the north
jetty to the maximum wave heights that could be generated over the full range
of wave directions possible. Unidirectional and directional spectra, represen-
tative of the six most severe hindcast storms in the past 20 years, were
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generated. These storms were used in the earlier physical model tests (Briggs,
Grace, and Jensen 1989) of the proposed 1988 rehabilitation of the north jetty
using the "placed-stone" construction technique. They had a range of wave
periods and heights of 12.5 to 16.7 sec and 15.4 to 23.0 ft (5 to 7 m), respec-
tively. They were run at only one water level and for a very short duration.
Even though a few more stones were randomly displaced, overall stability was
still good.

Finally, the model structure was rebuilt to initiate "hot spots" by dislodging
and loosening some stones, and retested. Since most of the observed move-
ment during the first test series occurred during the December storm, it was
decided to use only the six December storm conditions for this last test series.
Test results from this repeat series are summarized in Table 6. Step I caused
significant loosening of the armor with nine stones being displaced. At the
conclusion of step I it was anticipated that the repeat test might show a signif-
icant increase in damage above that observed for the original test. However,
steps 2, 3, and 4 produced only rocking of five or six armor units, with no
additional displacement observed. Minor rocking of two or three armor units
was observed during steps 5 and 6, with the structure emerging from the six-
step simulation in good condition (Photos 4 and 5).
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5 Summary and Conclusions

Yaquina Bay is located on the Oregon coast, approximately 110 miles
(204 kin) south of the Columbia River. Since authorization of the jetty system
in 1880, the north jetty has undergone extension or rehabilitation a total of
seven times, the most recent in 1988. The jetty tip now extends to just land-
ward of an offshore basaltic reef.

During 1989 the MCCP program convened a workshop of 25 coastal
experts, including personnel from academia, WES, the North Pacific Division,
and NPP, to propose and evaluate damage hypotheses and to map future direc-
tions for the monitoring efforts. The five most likely damage hypotheses were
(a) wave breaking on the jetty, (b) wave-current interaction due to the presence
of the reef, (c) scour leading to armor unit slumping, (d) foundation failure,
and (e) some combination of the above. One of the workshop recommenda-
tions was to conduct physical model tests of the 1978 jetty rehabilitation to
attempt to recreate damage to the north jetty following the 1979-1980 storm
season. Hopefully, these tests (this study) would test the wave-breaking dam-
age hypothesis.

The model north jetty was meticulously constructed at a scale of 1 to 45
(model to prototype) to reproduce, as closely as possible, the prototype jetty.
No information was available on the current condition of the bedding layer, so
as-built conditions were assumed. The bathymetry was carefully molded from
the most recent nautical charts. No attempt was made to ascertain their accu-
racy or changes that might have occurred since the surveys.

Meteorological and NOAA buoy records were scanned to identify the worst
storms during the 1979-1980 storm season. A total of 46 storms were
selected: 14 in October, 14 in November, and 18 in December. These storms
were hindcast using the WIS numerical model DWAVE to the deepwater depth
corresponding to the location of the NOAA buoy. Directional spectral infor-
mation was saved at 12-hr intervals to correspond with tidal fluctuations.
Comparisons of peak period and wave height between the WIS and NOAA
buoy showed reasonable agreement Sources of uncertainty were (a) differen-
ces in interval length (6-hr interval for the buoy), (b) wave energy travelling
parallel to the coast in deep water not making landfall at Yaquina, (c) interpo-
lations of wave directions between grids from 22.5 deg to 10 deg, and (d)
interpolation of wind fields on a 2.5-deg grid at 12-hr intervals.
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Results from DWAVE were input to the shallow-water numerical model
SHALWV to refract and shoal the storms to a water depth of 54 ft (16 in),
corresponding approximately to the depth of the wavemaker in the physical
model. Because of duplication. low-energy storms, and storm tracks not inter-
secting the Yaquina coast, the original number of storm segments was reduced
from 46 to 13.

Because of time and funding constraints, each 12-hr segment was only
simulated for 6 hr in the physical model. Because the tide is diurnal, these 6-hr
segments were divided into two 3-hr segments: one at high tide and one at
low tide using measurements from a tide gauge in Yaquina Bay. Thus, 26
wave conditions were simulated from the 13 storm segments in October,
November, and December 1979.

Control signals for the DSWG were simulated using the CRAY Y-MP
supercomputer and downloaded to the VAX 111750 for generation and data
collection. Data analysis was performed on the VAX 3600 using MLM
directional spectral analysis techniques. After calibration, the agreement
between measured and target storms was very good to excellent. Some storms
still had energy travelling in a northerly direction, away from the Yaquina jetty
system, and not measurable with the linear array of wave gauges. Variability
in measured parameters is within the acceptable range for 3-D basins.

Although isolated stones rocked and were dislodged, stability tests with the
26 storm events failed to produce any significant damage to the model north
jetty. After testing was completed, it was discovered that an error in the WIS
hindcast processing of the October test segments caused them to be too low in
period and heighL Thus, these six segments did not subject the jetty model to
the correct wave conditions during October. In retrospect, it is not felt that
this error was significant since none of the other wave conditions produced any
appreciable damage.

Some of the tests were repeated with the wave heights increased by
40 percent over the hindcast wave heights. The purpose of these tests was to
eliminate the possibility that the hindcasts had underpredicted wave heights. It
also was thought that increased wave heights would overcome any model
effects that might have occurred due to inaccurate bathymetry in the model.
Unfortunately, these increased wave height tests also failed to induce any
significant damage.

Next, some of the wave conditions from the earlier physical model study of
the 1988 rehabilitation were simulated. These waves consisted of unidirec-
tional and directional waves representing the six worst storms in a 20-year
interval. They had been hindcast using the same WIS numerical models. Peak
wave periods and wave heights ranged from 12.5 to 16.7 sec and 15.4 to
23.0 ft (5 to 7 m), respectively. They were run at only one water level and for
a very short duration. Even though a few more stones were randomly dis-
placed, overall stability was still good.
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Thinking that the north jetty had been built too tightly, "hot spots" were
created by selectively removing stones from the jetty tip. Again, only selected
storms were run for short durations, but the result was still the same: no
appreciable damage. Finally, the jetty was reconstructed in a very loose
matrix. Again, selective testing of this loose structure did not result in appre-
ciable damage. However, minor damage was observed when more severe
wave conditions were nm. The recorded damage in the model did not even
begin to resemble the extensive damage that actually occurred at Yaquina.

Damage to the north jetty at Yaquina may occur in rapid fashion as the
result of one storm or over the course of several storms or winter seasons.
Wave grouping or episodic waves, either of which can produce more damage
than isolated waves, may play a role at Yaquina Bay. All of the storms in
these physical model tests were limited because of time and funding con-
straints. A review of the physical modeling methodology did not indicate any
serious shortcomings. Based on this limited physical model test series, it is
concluded that armor instability due to wave attack alone is probably not the
responsible failure mechanism at the Yaquina Bay north jetty. If as-built con-
struction data and measured prototype wave, current, and bathymetry become
available, additional physical model tests could be more accurately performed
prior to any new rehabilitation.
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Table 1

Prototype and Model Wave Conditions t

pro"Test __T)_ ___ Model T_-_

o(m) (df) (S.,) ?4z) (am) (dg)

Y022N 10.00 4.40 35.00 1.49 0.67 9.78 -36.00

2 Y023M 12.50 4.50 18.00 1.86 0.54 10.00 -18.00

3 Y023N 11.10 3.80 6.00 1.65 0.60 .44 -6.00

4 YN20N 14.30 2.10 5.00 2.13 0.47 4.67 -5.00

5 YN21M 14.30 1.60 11.00 2.13 0.47 3.56 -11.00

6 YN21N 16.70 2.50 6.00 2.49 0.40 5.56 -6.00

7 YN22M 16.70 3.10 6.00 2.49 0.40 6.89 -6.00

8 YN22N 16.70 3.20 5.00 2.49 0.40 7.11 -5.00

9 YN23M 14.30 3.10 11.00 2.13 0.47 6.89 -11.00

10 YN23N 14.30 3.30 23.00 2.13 0.47 7.33 -23.00

11 YD24N 14.30 5.20 22.00 2.13 0.47 11.46 -22.00

12 YD25M 16.70 5.00 15.00 2.49 0.40 11.11 -15.00

13 YD25N 12.50 3.70 16.00 1.86 0.54 8.22 -16.00

Notes:
1. Tp Spectral peak period, Ifli, sec

Hmo - zero-moment wave height, an estimate of significant wave height
2. Nomendaturs for Test ID

Column 1: Y - Yaquina Bay Study
Column 2: 0 a October, 1979 Storm

N = November, 1979 Storm
D = December, 1979 Storm

Column 3: S a Day of Month
Column 4: S a Day of Month
Column 5: M. Icdnight

N - Noon
3. Dir - Wave direction of prototype and model, differences due to sign conventions



Table 2
Prototype and Model Water Levels at Wave Generator Depth

Depth 0 DSWG

No. Test i 1  Tid (m) Poto"ype (m) lode (an) 7 LevW (m)

I YO22NH 2.55 20.22 44.9 44.8

2 YO22NL 0.93 18.60 41.3 41.5

3 YO23MH 2.87 20.55 45.7 45.7

4 YO23ML 0.21 17.88 39.8 39.9

5 YO23NH 2.44 20.11 44.7 U.8

6 YO23NL 0.92 18.60 41.3 41.5

7 YN20NH 2.11 19.79 44.0 43.9

8 YN20NL 0.73 18.41 40.9 41.5

9 YN21MH 2.69 20.37 45.3 44.8

10 YN21ML -0.34 17.34 38.5 38.7

11 YN21NH 2.23 19.90 44.2 43.9

12 YN21NL 0.88 18.56 41.2 41.5

13 YN22MH 2.76 20.43 45.4 45.4

14 YN22ML -0.24 17.43 38.7 38.7

15 YN22NH 2.38 20.06 44.6 44.8

16 YN22NL 1.33 19.00 42.2 42.4

17 YN23MH 3.02 20.70 46.0 45.7

18 YN23ML -0.17 17.51 38.9 38.7

19 YN23NH 2.11 19.79 44.0 43.9

20 YN23NL 1.12 18.80 41.8 42.4

21 YD24NH 3.06 20.74 46.1 45.7

22 YD24NL 1.34 19.01 42.3 42.4

Notes:
1. Nomenclature for Test ID

Column 1: 1 ' Yaquina Bay Study
Column 2: k.. -. Oclober, 1979 Storm

N = November. 1979 Storm
D - December, 1979 Storm

Column 3: # - Day of Monlh
Column 4: # - Day of Month
Column 5: M = MIknight

N - Noon
Column 6: H = High Water Level

L = Low Water Level
2. 7 Level - Seven levels selected for model tests from originally

"scaled 26 levels.

(Continued)



Table 2 (Concluded)

No. Test 101 Steom Tide (m) Proloype (m) ModdS(n) ,7 LWover

23 YD25MH 2.72 20.39 45.3 45.7

24 YD25ML 0.35 18.03 40.1 39.9

25 YD25NH 2.76 20.44 45.4 45.7

26 YD25NL 0.99 18.67 41.5 41.5



C - - - - N N N~ Ns cm N CI

- NN N N~ N N N

- -- N N N N N~ N N N N N

C - N - '- N N N- N~ Nk N N~

co ~ - - N N Nl N N- Nl

ma - - N -k N~ .- N N N N Nm

OD C4 - . - Ni Nj N N N csi 4 N4

(\ - N N N N Nj N N

r- - - l-f 'CID-

.dN N~ Ni N N~ Ni N NM

o -i

N~~~ N N N N- N~ (N N~ NA

CMI N N N Nm cm N\ Nm N N

I _ C C) c i N) N) C C)i Ai C4 C4

4"C q 4" 4 n co c .) m 0 c

z



N-i cm A Nm CNi - 4 N Q C-4 cY

-N N N N cm C4 C4 N N -

0 cii NM cli4N (MeN W N ,N C 0

* N~ N4 WW N W N N

*~Ch N N N N N Wi

CIA N N- cm Nm N CY Cid CM N 1 N -.

. cii cmi ci cm m 4 c

z
3 N5> N0 5N N>0 NNN



0W 1- 40 v 1 0~ n 01 0 M e

010 m I l- .0 0 V

0 0 1c qn Il I q q V 0 q n Ilk V I-

ak en 0ý en en 1- .n .n .~e . e

O v C 0 0 '0 'q Pt c* t 7 0 " q' O e

0 dM en I- w m m 0 sO en e

IV en It001 q q "I (P R Mi p 'I :

cc a

01 - 0 00 0 0 m m m 0 en co
qf z x 0 0 0 00 )MON z z z

0501014(0~c cm i~ . rj~ ~ ~ ~ ~~~c enI nen00C ~ ' C

z
,> >- > en en en en e > - n



0 40 40 ) U 0) 0 4 40

N) N N N N N U N N4

4Q - 4 - q 0 4p04p

OD. cm al a a a N - 0 4 0 4 o

(0 0) 4d -i c; U) N 4 + i.

w - 4 40 40 0) 0 0 0 r- N,

w w cd ad0 (060 0 4 N N

.1, -d -6 a Y mt-

co40 40(0 U) 0 O t 04040

N~f N . r- I N N - - - 0 0 M

=I -n m C* m-Mm m c ,

- N N N cm cm o



Table 5
Summary of Results for Stablilty Test 1

SWLsop f%, adlwT , s H Wo, It Obown tions

October Conditions

1 +8.2 16.7 10.4 Minor rocking-2 or 3 stones

2 +3.2 10.0 14.4 No movement

3 +9.5 12.5 14.9 Minor rocking-2 or 3stones

4 +1.0 12.5 14.9 Reorientation and loosening of
8 to 10 armor stone

5 +8.2 11.1 12.6 Additional loosening of stone
identified in stop 4

6 +3.2 11.1 12.6 No movement

November Conditions

7 +6.8 14.3 6.8 No movement

8 +3.2 14.3 6.8 No movement

9 +8.2 14.3 5.4 No movement

10 -0.8 14.3 5.4 No movement

11 +6.8 16.7 8.1 No movement

12 +3.2 16.7 8.1 No movement

13 +9.5 16.7 10.4 No movement

14 -0.8 16.7 10.4 No movement

15 +8.2 16.7 10.4 No movement

16 +4.6 16.7 104 No movement

17 +9.5 14.3 10.4 No movement

18 -0.8 14.3 10.4 Minor rockng-2 or 3 stones

19 +6.8 14.3 10.8 Minor rocking-2 or 3 stones

20 +4.6 14.3 10.8 Minor rockng-2 or 3 stones

December Conditions

21 +9.5 14.3 17.1 Reorientation of 1 stone and
rocidng of 3 or 4 oliers

22 +4.6 14.3 17.1 General loosening of armor

19 
above swA

23 +9.5 16.7 16.2 Same as step 22

24 +1.0 16.7 16.2 Same as step 22

25 +9.5 12.5 12.2 Minor rocking-3 or 4 stones

26 +3.2 12.5 12.2 Same as sop 25



Table 6
Summary of Results for Stability Test 2

SWL I _ _ _ __

stop f%, mlw Tamo __,Oboeewn

w Condione

1 +9.5 14.3 17.1 Loosenwn of anoar,
dlowsnsew o 9
seoneo nd M5 od

2 +4.6 14.3 17.1 Rocking-S or 6

3 +9.5 16.7 16.2 Same as p 2

4 +1.0 16.7 16.2 Sam as stop 2

5 +9.5 12.5 12.2 inor rockkg-2 or 3

6 +3.2 12.5 12.2 Same assp 5
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Photo 4. Overhead view of structure following repeat stability test
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Appendix A
WIS Comparisons with
Buoy 46002
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WAVE HEIGHT COMPARISON
BUOY VS US OCT. 1979 STORM
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Appendix B
Prototype Gauge Depths

Rev.: 2 ul 91

EqultmPnt Prototye Gage Depths
Yequlne Bay, Oregon

"Gage 1 Gege2 aBe 3 S"ge4 Cge 5 Gage6 Gageo7 GBe8 Gape9 Gage 10
No. Test ID (m) (m) (m) (m) (m) (m) (m) (m) (m) (m)

1 Y022NN 15.8 15.9 15.5 15.9 15.9 16.3 15.5 15.5 9.1 8.8
2 YO22NL 14.3 14.4 14.0 14.4 14.4 14.8 14.0 14.0 7.5 7.3
3 Y0231W 16.2 16.3 15.9 16.3 16.3 16.7 15.9 15.9 9.5 9.2
4 YO23ML 13.6 13.7 13.3 13.7 13.7 14.1 13.3 13.3 6.9 6.6
S YO23NN 15.8 15.9 15.5 15.9 15.9 16.3 15.5 15.5 9.1 8.8
6 YO23NL 14.3 14.4 14.0 14.4 14.4 14.8 14.0 14.0 7.5 7.3

7 YN2ON 15.4 15.5 15.1 15.5 15.5 15.9 15.1 15.1 8.6 8.4
8 YN20NL 14.3 14.4 14.0 14.4 14.4 14.8 14.0 14.0 7.5 7.3
9 YM21NN 15.8 15.9 15.5 15.9 15.9 16.3 15.5 15.5 9.1 8.8
10 YN21NL 13.0 13.2 12.8 13.2 13.2 13.6 12.8 12.8 6.r 6.0
11 YM21NN 15.4 15.5 15.1 15.5 15.5 15.9 15.1 15.1 8.6 8.4
12 YN21NL 14.3 14.4 14.0 14.4 14.4 14.8 14.0 14.0 7.5 7.3
13 YN22NN 16.0 16.2 15.8 16.2 16.2 16.6 15.8 15.8 9.3 9.1
14 YN22ML 13.0 13.2 12.8 13.2 13.2 13.6 12.8 12.8 6.3 6.0
15 YN221N 15.8 15.9 15.5 15.9 15.9 16.3 15.5 15.5 9.1 8.8
16 YN22NfL 14.7 14.8 14.4 14.8 14.8 15.2 14.4 14.4 8.0 7.7
17 YN23NN 16.2 16.3 15.9 16.3 16.3 16.7 15.9 15.9 9.5 9.2
18 YN23ML 13.0 13.2 12.8 13.2 13.2 13.6 12.8 12.8 6.3 6.0
19 YN23UN 15.4 15.5 15.1 15.5 15.5 15.9 15.1 15.1 6.6 8.4
20 YN23NL 14.7 14.8 14• 14.8 14.8 15.2 14.4 14.4 8.0 7.7

21 YD24NN 16.2 16.3 15.9 16.3 16.3 16.7 15.9 15.9 9.5 9.2
22 Y024NL 14.7 14.8 14.4 14.8 14.8 15.2 14.4 14.4 8.0 7.7
23 YD25NM 16.2 16.3 15.9 16.3 16.3 16.7 15.9 15.9 9.5 9.2
24 YD251. 13.6 13.7 13.3 13.7 13.7 14.1 13.3 13.3 6.9 6.6
25 YD25N3 16.2 16.3 15.9 16.3 16.3 16.7 15.9 15.9 9.5 9.2
26 YD25NL 14.3 14.4 14.0 14.4 14.4 14.8 14.0 14.0 7.S 7.3
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Appendix C
Target and Measured
Prototype Directional Spectra
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Appendix D
Measured Frequency Spectra
and Directional Spreading
Functions
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Measured Model Frequency
Spectra for Gauges 1 to 10
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Appendix F
Measured Peak Periods and
Wave Heights
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Appendix G
Notation

f Frequency

h Water depth

Hmo Zero-moment wave height - Table 1

L Wavelength

L,/Lp Linear scale of the model

m, p Model and prototype quantities, respectively

Sa Specific gravity of an individual armor unit relative to the
water in which it was placed, i.e., Sa = yw

t Time

Tp Spectral peak period- Table 1

Wa Weight of an individual armor unit, lb

x X-axis coordinate

Ya Specific weight of an individual armor unit, pcf

Tw Specific weight of water, pcf

9 Wave direction, angle of wave propagation

Appamvx G W G1
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